A2- LA RAISON EST-ELLE SEULE SOURCE DE VERITE ?
Nous
connaissons la vérité, non seulement par la raison, mais encore par
le cœur ; c’est de cette dernière sorte que nous connaissons les
premiers principes, et c’est en vain que le raisonnement, qui n’y
a point de part, essaye de les combattre. Les pyrrhoniens1,
qui n’ont que cela pour objet, y travaillent inutilement. Nous
savons que nous ne rêvons point ; quelque impuissance où nous
soyons de le prouver par la raison, cette impuissance ne conclut
autre chose que la faiblesse de notre raison, mais non pas
l’incertitude de toutes nos connaissances, comme ils le prétendent.
Car la connaissance des premiers principes, comme qu’il y a espace,
temps, mouvement, nombres, est aussi ferme qu’aucune de celles que
nos raisonnements nous donnent. Et c’est sur ces connaissances du
cœur et de l’instinct qu’il faut que la raison s’appuie et
qu’elle y fonde tout son discours. Le cœur sent qu’il y a trois
dimensions dans l’espace et que les nombres sont infinis ; et
la raison démontre ensuite qu’il n’y a point deux nombres carrés
dont l’un soit le double de l’autre. Les principes se sentent,
les propositions se concluent et le tout avec certitude, quoique
par différentes voies.
Pascal
– Pensées
1 - A quelle idée l'auteur
s'oppose-t-il et quelle idée défend-il ?
L'auteur
s'oppose à l'idée que la raison serait la seule voie d'accès
possible à
la vérité. Il défend
l'idée qu'il existe une
autre voie d'accès à la vérité : le coeur.
2 - Qui sont les pyrrhoniens et
quels problèmes posent-ils à Pascal ?
Les
pyrrhoniens (appelés aussi "sceptiques") sont des
philosophes qui argumentent de la manière suivante. Soit un dialogue
entre A et B. B est pyrrhonien ou sceptique. A : "j'affirme p"
(p, q,
r, ...,
z sont des
propositions quelconques). B : "je veux une preuve de p".
A : "facile : p parce
que q". B :
"d'accord ; maintenant, je veux une preuve de q".
A : "facile : q
parce que r".
B : "d'accord ; maintenant, je veux une preuve de r".
A : "facile : r parce
que s". B :
"d'accord ; maintenant je veux une preuve de s"
... Et ainsi de suite jusqu'à ce que A ne puisse plus donner de
preuve de ce qu'il avance. C'est alors que B triomphe : "si tu
ne peux pas prouver z,
c'est que y n'est pas
certain, x non plus
... s non plus, r
non plus, q non
plus et donc tu ne peux pas
affirmer p". En
généralisant, il est facile de voir que le pyrrhonien refuse
d'affirmer quoi que ce soit : on ne peut jamais être sûr de rien
("il faut suspendre son jugement"). Ce qui pose au moins
deux problèmes à Pascal qui est un philosophe du XVII° siècle à
la fois scientifique
(il a découvert la pression atmosphérique, le calcul des
probabilités et le calcul infinitésimal) et croyant
(il a fait partie du mouvement janséniste et voulait écrire une
apologie de la religion chrétienne) : si on suit les pyrrhoniens, il
n'y a pas de vérité
scientifique ni de foi religieuse possibles.
3
- Expliquer "quelque
impuissance où nous soyons de le prouver par la raison, cette
impuissance ne conclut autre chose que la faiblesse de notre raison,
mais non pas l’incertitude de toutes nos connaissances, comme ils
le prétendent".
Tous les philosophes partagent-ils le point de vue de Pascal sur la
faiblesse de la raison ?
Pascal
est d'accord avec les pyrrhoniens sur un point : en effet, on ne peut
pas tout prouver par le raisonnement (dans le dialogue entre A et B,
il y a forcément un moment où A n'a plus d'argument à avancer).
Mais il s'oppose à eux sur la conséquence à en tirer : pour les
pyrrhoniens, si on ne peut pas tout prouver par le raisonnement,
c'est que toutes nos connaissances sont donc incertaines ; pour
Pascal, en revanche, si on ne peut pas tout prouver par le
raisonnement, c'est qu'il y a des vérités qui se prouvent autrement
que par le raisonnement. La différence entre Pascal et les
pyrrhoniens, c'est que pour
ces
derniers, comme la plupart des philosophes depuis Platon, le
raisonnement, la démonstration, la déduction étant les
seuls
moyens
de ne pas se laisser distraire par ce que l'on sent ou ressent,
et donc de ne pas se laisser manipuler par les apparences (on
se souvient que, pour Platon, c'est là le danger numéro un de la
rhétorique), c'est aussi le seul moyen d'atteindre la vérité.
Pascal n'est pas d'accord. Il y en a un autre : ce que l'on ressent,
au plus profond de soi-même, par le coeur.
4
- Donner
un exemple de raisonnement qui s'appuie sur les "connaissances
du cœur" (il y en a beaucoup dans votre cours de
mathématiques).
N'importe
quel théorème de mathématiques commence par des prémisses
indémontrables qu'on appelle des axiomes (ou des postulats), des
définitions, etc. Votre professeur de mathématiques vous donne
aussi parfois des formules ... à
apprendre par coeur
! Autrement dit, même en mathématiques (qui est quand même
l'activité humaine qui fait le plus souvent appel au raisonnement),
le raisonnement est impossible sans "connaissances du coeur",
comme dit Pascal. Pascal,
qui a beaucoup travaillé sur la géométrie d'Euclide sait très
bien, par exemple, qu'on ne peut pas tracer de figure plane si on
ne sent pas (par le coeur)
que, par un point extérieur à une droite, il ne passe qu'une seule
parallèle à cette droite.
5
- Quelles sont les relations qu'entretiennent le cœur et la raison
d’après Pascal ?
Il
y en a trois : complémentarité, antériorité et subordination.
Complémentarité : dans une argumentation quelconque, le coeur et la
raison se complètent harmonieusement (il faut reconnaître qu'il y a
des vérités que l'on sent sans pouvoir les prouver). Antériorité
: dans une argumentation quelconque (cf. l'exemple des mathématiques
que nous avons pris ci-dessus), on commence toujours par les
connaissances du coeur sans lesquelles aucun raisonnement n'est
possible. Subordination : la raison a toujours besoin du coeur, mais
non réciproquement (on peut imaginer une culture dans laquelle
toutes les vérités se sentent intuitivement, mais non une culture
où on peut tout prouver par le raisonnement).
6 - En vous appuyant sur vos
connaissances en mathématiques, développer l'avant-dernière
phrase.
Soit
à démontrer algébriquement
que, x et
y étant deux nombres
entiers quelconques,
x2 ≠ 2y2
("il n'y a
point deux nombres carrés dont l'un soit le double de l'autre").
En effet, supposons que x2 =
2 y2.
On aurait alors √x2
= √(2
y2),
soit x = √2
y.
Or √2 n'est pas un nombre entier (√2 ≈ 1,414...). Donc √2 y
non
plus et x non
plus. Ce qui contredit notre hypothèse de départ ( x
et
y doivent
être
deux nombres entiers).
Donc, effectivement, x2 ≠ 2y2.
C'est facile à démontrer. Oui mais, pour y parvenir, nous avons
besoin d'admettre, comme nous l'avons fait, que x
et
y sont
deux
nombres entiers
(deux "nombres
carrés"
dit Pascal) quelconques.
Autrement dit, nous ne pouvons raisonner que pour tout x
et
tout y,
quels qu'ils soient. Bref, comme le dit Pascal, pour pouvoir
développer ce raisonnement, il faut que "le
cœur sent[e] ... que les nombres sont infinis".
Si, maintenant, nous voulons faire une démonstration non pas
algébrique mais géométrique, cette fois, ce n'est pas plus
compliqué, mais à condition que "le
cœur sent[e] qu’il y a trois dimensions dans l’espace".
Conclusion : "c’est
sur ces connaissances du cœur et de l’instinct qu’il faut que la
raison s’appuie et qu’elle y fonde tout son discours".
7 - En vous appuyant sur cet
autre texte de Pascal, donner une définition de ce que Pascal
appelle le cœur : "Car
il ne faut pas se méconnaître : nous sommes automate autant
qu'esprit ; et de là vient que l'instrument par lequel la persuasion
se fait n'est pas la seule démonstration. Combien y a-t-il peu de
choses démontrées ! Les preuves ne convainquent que l'esprit. La
coutume fait nos preuves les plus fortes et les plus crues ; elle
incline l'automate, qui entraîne l'esprit sans qu'il y
pense"(Pascal,
Pensées).
Le
coeur n'est que l'autre nom de la coutume, c'est-à-dire ce que nous
apprenons, dès notre plus tendre enfance, sans nous en rendre
compte. "Nous
sommes automate autant qu'esprit",
dit Pascal. Eh oui. Il nous invite à une modestie dont les
philosophes ont tendance à nous éloigner : nous ne sommes pas de
purs esprits capables de prouver rationnellement tout ce que nous
tenons pour vrai. Cela rappelle cette autre citation de Pascal : "le
coeur a ses raisons que la raison ne connaît point".
Le coeur ne fonctionne pas comme la raison : il sent
les
choses. Nous sentons
que
les nombres sont infinis, que Dieu existe (ou n'existe pas), que nous
sommes amoureux, etc. Et d'où vient que nous le sentons ? Eh bien
c'est comme ça. C'est la coutume. C'est en faisant des mathématiques
que nous sentons
les
vérités mathématiques, c'est en priant Dieu que nous sentons
la
présence de Dieu, c'est en aimant l'être cher que nous sentons
que
nous sommes amoureux, etc. Il est inutile et ridicule de demander une
autre explication.
1
Courant philosophique (aussi appelé sceptique)
fondé par Pyrrhon d’Elis qui soutient qu’on doit suspendre son
jugement car on ne peut jamais rien savoir avec certitude.